Course Title: interdisciplinary learning from literature to math and science using "Thinking Skills and Engineering": An integrative Perspective for the preK-5 grade curriculum

Credit: Professional Development Three credit course, to be giving for the Millis School District, 4th grade teachers

Dates & Times: Fall of 2009

Instructors: William Wolfson, BSEE, MS, . Contact Information: <u>billw@engineeringlens.org</u>, 508-620-1169 Office hours: none; just by email, phone or in class

<u>Course Description</u>: This professional development course will introduce teachers to the profession of Engineering and to the PreK-5 Engineering strand of the Science & Technology/Engineering Curriculum Framework. The course will model Interdisciplinary (cross functional) learning by using the engineering design process to connect literature to the math and science lessons. It will also provide teachers with exciting opportunities to integrate the engineering design process is a thinking skill, the course will model for the teachers the use of thinking skills related around productive questioning, meta-cognitive reflection, creative and critical thinking, developing strategies and setting a learning environment to create excitement in learning.

This course will give you, the teacher, a great opportunity to work with your students to become self learners. The process will allow you to connect at least three or four subject together so you're teaching across the curriculum and your students will see the relevance of what they are learning. The students will be part of finding the design challenges in the stories, thus creating their own learning experiences.

They will not be learning in a silo but you will be working with the students in a constructionist approach. The concepts used are based on Vygotski's and Piagets' approach to early education.

Pedagogy skills will allow you to engage the students by; **Modeling, Scaffolding, Coaching, Reflecting and Fading.**

LEARNING OUTCOMES / OBJECTIVES:

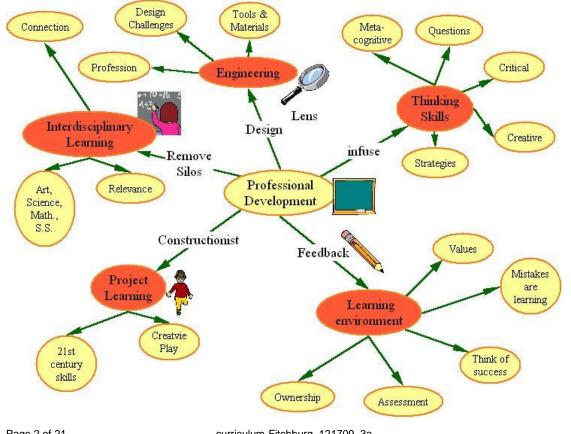
By the end of this course, the PreK-5 Teachers will be able to:

- Clearly articulate the nature of technology/engineering as defined in the Framework
- Use creative design process such as Brainstorming, Brain-writing, and Morphological Analysis
- Create a learning environment that engages the students and excites them in learning.
- Explain the relationship between science and technology/engineering
- Provide examples of the types of tasks that engineers perform
- Describe the steps of the engineering design process
- Design lessons that are interdisciplinary and utilize the engineering design process
- Create a plan for integrating the engineering curriculum framework requirements into the classroom that is exciting and fun for children to learn
- Be able to model for students the use of productive questioning and meta-cognitive reflection, creative and critical thinking skills in the learning process.

Create project based learning tasks for your students and help them design collaborative effort and assessment methods for the projects.

Knowledge: As a result of the learning experiences in the course, you will become more cognizant of:

- The state's education Science Framework strand 4 •
- Both creative and critical thinking methodologies •
- Use of feedback and assessment in learning
- Using engineering design to create an interdisciplinary learning environment


Skill: As a result of the learning experiences in the course, you will become better able to:

- Use of brainstorming, brain-writing and morphological analysis
- Using the design process as described in the Framework •
- Finding design challenges in stories that students read

Caring: As a result of the learning experiences in the course, you will become more competent in your ability to:

- Acceptance of mistakes as a learning experience •
- Work collaborative with your fellow candidates. ٠

Ethical: As a result of the learning experiences in the course, you will become more competent in your ability to create a learning environment that fosters ethical relationships.

Graphical view of the Professional Development program:

curriculum-Fitchburg_121709_3a

Howard Gardner (Harvard professor and education authority) views education core challenge as getting people engaged in the "right things". He means that inculcating a sense of respect for knowledge and ethics is as important as improving cognitive abilities. In other words, educators have to establish an ongoing linkage between learning and purpose.

Effective thinking-centered instruction aims to achieve two educational objectives:

- 1. To cultivate the active use of knowledge
- 2. To help students become self-regulated learners.

Course Requirements – Candidates will read all the assigned material and do the expected projects per the scheduled assignments. The quality of the work shall demonstrate a focus on improving thinking skills and the engineering methodology. Course participation and the use of questions for engagement will be evaluated during projects.

Course Expectations – Candidates are expected to participate in the discussion forum and complete the assigned projects on time. Students are responsible for making arrangements with the instructor when difficulties arise in completing an assignment on time. A set of Rules of Engagement for the class will be published for student use. Grading rubrics will be used for evaluating each of the assignments, team assignments and discussion board postings.

Course Rubric: See attached rubric for this course.

Grading Criteria: - Candidates will be assessed based on many classroom activities and their personnel effort put into both their success as well as supporting a learning environment. Major breakdown of these are shown below:

Activity	Discussion	% of total
Individual assignments	This includes developing lesson plans, writing a	30
	paper and creating design challenges from stories.	
Team assignment	Ability to work with others, communication skills, 25	
	being able to give constructive feedback.	
Classroom discussion	This also includes on-line discussion boards.	25
Supporting a learning	This measures the attitude of the individual in 20	
environment	making suggestions, taking risks in activities, and	
	supporting the learning atmosphere.	

Course outline: The course will focus on five major areas: 1) who are engineers and what do they do; 2) strand four of the science framework: 3), engaging in cross functional learning using the engineering design process as the connector:4), collaborative team learning in an inquiry based learning mode: and 5) the infusion of the use of skillful thinking across the learning environment. Modeling the engineering thought process and skillful thinking process will serve as the basis for exposing teachers to the use of these strategies in their classrooms. The use of questioning in the classroom will be modeled for teachers as a method for engaging students in the thinking process. Teachers will develop an engineering design process based on their own experiences rather that just copying the one from the frameworks. **Emphasis will be focused on developing curriculum for PreK-2 including more hands on and think, pair and share approaches while for grades 3-5 a more analytical analysis will be added to the projects.**

Major area	Theme	Time
Introduction / Creating a	Attributes, Values, Teacher Skills and the	4 hours
Page 3 of 21	curriculum-Fitchburg_121709_3a	

1 1 1 1 1 1 1		
learning collaborative in the	relation to excellence in academics and the	
classroom / pre-Assessment of	larger world of work.	
engineering knowledge and		
thinking skill awareness	Developing the outcome goals for the class.	
Who are engineers?	Careers and work effort, interview an	4 hours
	engineer	
Engineering framework	Develop a design process without looking at	4 hours
Design process	the Framework	
Tools		
• Man made/ Natural		
Materials		
Creative and critical thinking	Learn the tools of Brainstorming, Brain-	4 hours
skills around the design	writing, Morphological Analysis and Pugh	
process	analysis for divergent and convergent	
	processing skills	
Cross functional learning	The use of literature as a basis to create an	4-8 hours
design	engineering design.	
	Creating an interdisciplinary connection	
	between the science framework requirements	
	and literature. Create lesson plans for stories.	
Inquiry based learning, the	Develop Candidates centered learning and	4 hours
development of a design	assessments, planning and interpretive	Thours
development of a design	investigation, Observation, Communication	
Infusion of thinking skills	Create an appreciation for life-long learning	4 hours
indusion of timking skins	by providing opportunities to develop	4 110015
	creative and critical thinking skills	
Conclusions, Post	Teachers as the engineers of education	4 hours
Assessment	The take home lesson: What are you going to	4 110015
Assessment		
On line community support	bring back to your classroom?	4-8 hours
On-line community support	Provide on-line follow up for the teachers	4-8 nours
	to share, collaborate work effort in their	
	classroom. We will use an on-line	
	teaching tool such as Blackboard or	
	Moodle. The teacher will have to create a	
	Design Challenges from stories or other	
	items using templates provided.	
	Total t	ime = ~36-44 hours

Related standards

The Partnership	The expectation of teachers who incorporate these teaching strategies into their
for Twenty first	classrooms is that they will be able to facilitate the skill development their
Century Skills	students need to use integrative thinking.
highlight the	Learning and innovation skills increasingly are being recognized as the skills
skills and	that separate students who are_ prepared for increasingly complex life and work
thought	environments in the 21st century from those who are not. A focus on creativity,
processes	critical thinking, communication and collaboration is essential to prepare
children need in	students for the future. This statement, from the Partnership for 21st Century
order for them to	Skills, highlights the importance of instilling thinking skills into our youth.
Dama 4 of 04	survive State and 101700 Da

be competitive in today's ever- changing society	Other components related to learning and innovation skills of the students include: (1) Being open and responsive to new and diverse perspectives, (2) Making complex choices and decisions, (3) Identifying and asking significant questions that clarify various points of view and lead to better solutions (www.21stcenturyskills.org). These three objectives are descriptors of the process of integrative thinking.
MA Framework	MA Framework Science (2006) Standard (Strand 4) & Mathematics,

Pre-Assessment Survey

- What is your exposure to the engineering requirements in the Framework?
- How do you use open ended questions to engage students?
- What approach do you use to integrate thinking skills in your lessons?
- How much cross functional learning do you use in your classroom?
- How do you use a constructionist approach in your class room?
- Do you feel comfortable in describing what engineers do?
- Could you describe one learning strategy you use in your teaching?

This program explicitly addresses innovation and entrepreneurship in a number of ways. First, there is an explicit focus on needs finding. Students must identify with characters in literature, and decide what opportunities might exist to help those characters. As such, the program is as heavily focused on the entrepreneurial skill of opportunity identification and assessment. Second, because the program is heavily oriented toward the kinds of thinking skills that the engineering design process requires, it includes substantial emphasis on the kinds of thinking that lead to innovation. In particular, Teachers and students use divergent and convergent thinking processes and techniques (e.g., brainstorming, criteria-based idea selection) as they develop their ideas for how to respond to the needs of characters in literature. Finally, the design of the professional development workshop is meant to lead to curricular innovation. While participants will be introduced to various techniques and the framework, the participants will be responsible for designing their own projects, and will utilize innovation-oriented design techniques to do so.

Introduction Phase: 4 hours

We can guarantee what we say, but not what you hear.

Description

- It is not about teaching but student learning. There is too much data to know it all.
- Isidore Rabi Nobel Prize Physicist... Every other mother would ask after school "So? Did you learn anything today? But my mother always asked me a different question. "Issy' she would say, "Did you ask a good question today"
- Discussion of Values in the School

Class introduction:

Student will: Page 5 of 21

- Introduce yourself
- What you teach and grade level?
- What you are hoping to gain from the course?
- What in your childhood engaged you in the learning process?

Creating a class rubric: Candidates will work as teams and develop what the goals for the class learning should be and then craft a rubric and feedback methods to be used in the class.

Setting the learning environment.

This PD will model for the teachers the learning environment that should be established in their classroom. The student is not going to be engaged unless there is an atmosphere in the classroom of caring and respecting the student. The environment is a combination of the values and the following attributes:

Belief that all children can learn,	Effort is what gets results not native intelligence Carol
but not always the same time and	Dweck
way	http://dww.ed.gov/learn/learn.cfm?PA_ID=8&T_ID=18&
	<u>P_ID=34&rID=1</u>
	Fixed intelligence, malleable intelligence
Developing more curious minds	Education is not a factory model and the children are not a
John Barell	vassal to fill but come with pre-knowledge Dave Perkins
Curiosity & Skepticism	
Children need to believe they control	Challenge students to grapple with ideas, rethink their
their learning environment	assumptions and examine their mental model of reality.

Teacher skills:	
• Thinking aloud (their own intellectual journey)	Setting high expectations
• Wait 30 seconds	Creating questions and responses
Acknowledge each student	• Raising the quality of peer interaction
• Allowing the students to be part of the assessment strategy	• Using teacher modeling
Taking Student's own ideas seriously	

Create a Wall of learning; which includes Questions to be asked by the students; items that are developed by the students such as the design process, and Key vocabulary words, Course values (My expectations for how we should approach this Learning): Part of the Learning environment.

- To be encouraged, modeled, and explored
- Values are deeply held beliefs about what is important or desirable. They are expressed through the ways in which people think and act.
- Every decision relating to curriculum and every interaction that takes place in a school reflects the values of the individuals involved and the collective values of the institution.
- The values on the list below enjoy widespread support because it is by holding these values and acting on them that we are able to live together and thrive. The list is neither exhaustive nor exclusive.

Excitement	Continuous learning	Learning is through work	Collaboration
Measurements are for improvement	Renewal/ Celebration	Trust/ Integrity	Listen First
Encourage Constructive Dissent	Respect for all	Risk Taking	Process is what you do
Remove stereotypes	Be passionate	Innovation	Enthusiasm

Nothing is ever achieved without enthusiasm ... Emerson

The most important attitude that can be formed is that of the desire to go on Learning ... John Dewey

"Education is not the filling of a pail but the lighting of a fire." ... W. B. Yeats

"Children must be taught how to think, not what to think." Margaret Mead

Mistakes and failures teach students what *doesn't* work, so they can find what *does* work.

Reading / Assignments

Review Components of a Well Developed Thinking Skills Program by Arthur L. Costa, Ed. D.

We need to focus on modeling for the students the way to ask questions based on the desired outcomes to demonstrate that learning is achieved by getting the students to understand how they gathered the data & use skillful thinking to make a conclusion.

In addition, we need to model the meta-cognition aspects on how we arrived at a learning point. By providing examples & engaging students in role playing we can demonstrate how we arrived at a particular point.

The teacher will be able to identify the expected outcome and question the students on how they achieved this outcome.. In addition, the students will assess themselves on their compliance with the ground rules that were established in the beginning of the exercise.

The goal for the teacher is to create an environment that supports learning and construction of knowledge by the student. **It is not about teaching but student learning.** There is too much data to know it all.

Overview ... working as teams

Activity: General rule: there will be at least one activity in each half day session where the teachers will build, interact and compare results.

Activity #1; Ask teachers to get into small groups and write down on large pieces of paper what their goals are for their students each year. Have them note down what grade they teach. Groups share their goals and see whether there are any that are grade/subject specific. (approx. 30 mins)

Break;

Pre-Assessment to see what the teachers understand about engineering

Activity#2; Teachers will complete an activity in small groups. For example, they may build a tower for a mini teddy with only paper and tape. This type of activity will be followed by a discussion of identifying need. Allow 20/30 mins to make it and then review. Teachers will explain how and why the process worked or did not.. This activity will be used to introduce evaluation of a design. Teachers will be encouraged to assess their own strategies for completing the process (e.g. design first or just build). Evaluation of designs will be introduced.

Activity #3 : Ask teachers to develop What are the desired results? Understanding by Design is particularly helpful because you begin by looking at the "desired result." What do you want your students to know and be able to do? What student learning to you want to take place as a result of this lesson? What standards are you trying to meet? Look for information on what is called "backwards design." Start with the desired result - the final assessment - and go backwards through what needs to be done to get there!

Second unit ... About Engineering

Session objectives:

By the end of this session, participants will be able to:

- Distinguish between what engineers, scientists and mathematicians do
- Reflect on some of the stereotypes and gender issues within the Engineering Profession

Activities:

- 1. Why do I need to know about engineering as an educator?
- 2. Draw a picture of an engineer and write a short paragraph of what the engineer is doing in the picture.
- 3. **Classroom discussion:** What are some stereotypes around engineers? What causes society to have stereotypes?
- Working as teams, generate definitions of what Engineers, Scientists, Entrepreneur, Artist and Mathematicians do. 4.

Note: each session will have objectives and activities

Discuss what activities we can do with our students to see what they know of the engineering profession.	Reading:
 Draw a picture of an engineer. Engineer Career(discipline): Engineer 	Life story of a great engineer Bernard_Gordon_has_been_called_ a.doc
 Senior Engineer Principle Engineer Chief Engineer 	What does an engineer do and what should their skill sets be? engineer_definition_careers.pdf (31.835 Kb)
Project Engineer Test Engineer Component Engineer Product Engineer Industrial Engineer Quality engineer Manufacturing Engineer Software designer Service Manager/Engineer	Why use Engineering in Education? good scource_engineering as a connector.doc (115 Kb) Good article on how the concept of integrating engineering design into our curriculum will help our students.

Application Engineer Sales Engineer Assignment 1.1: Interview an Engineer you know about one day in his/her work life (the teacher will help in finding one if needed) Using the engineering design process from the Framework, describe which step your engineer was working on the day you conducted the interview Understanding of the Engineering disciple. How would we define? • Engineering • Science • Mathematics	Stand 4 Section of the FrameworkEnabled: Statistics Tracking Strand4_science_engineer_framewo rk_0501.pdf (48.106 Kb)This is the major portion of the framework that explains the Engineering Strand. It is taken from the whole framework for your convenience. It is in a PDF formatReview the rules of engagement , add your ideas & comments to our rubric.Using Bernie Gordons "what is an engineer" booklet, we will explain the following: What do you think an engineer does?What does an engineer studyWhy are values important?How is it similar and dis-similar from other jobs?What is the engineering design process and tools?Review the ABC nightline video designing a shopping cart.Review Richard Feynman and Faraday's
Third unit Understanding the Science Framework	Strand 4
Understanding of the Engineering Strand of the Massachusetts Framework. Lets create a design process using your experience from a project around the house or office.	 Reading: Science, Technology/Engineering Framework posted Engineering in the K-12 Classroom The Design Process, how does it related to critical thinking, problem solving and the science discovery process? Tools:
Discussion Board: What Stereotypes are there about Engineers? Are they different by gender? Documents; http://www.integratingengineering.org/critical_learning/ question_engineering_table_071207.pdf	Materials, Tools and the Design processLinks:Engineering design process

Unit 4 Creative and critical thinking skills around the design process

Learn the tools of Brainstorming, Brain-writing, Morphological Analysis and Pugh analysis for divergent and convergent processing skills.

Activity: The students start the course by keeping a bug (list of items that you encounter that bother you) list. From this list, teachers are introduced to the creative side of designing.

*How does the program teach innovation or entrepreneurship?

This program explicitly addresses innovation and entrepreneurship in a number of ways. First, there is an explicit focus on needs finding. Students must identify with characters in literature, and decide what opportunities might exist to help those characters. As such, the program is as heavily focused on the entrepreneurial skill of opportunity identification and assessment. Second, because the program is heavily oriented toward the kinds of thinking skills that the engineering design process requires, it includes substantial emphasis on the kinds of thinking that lead to innovation. In particular, teachers and students use divergent and convergent thinking processes and techniques (e.g., brainstorming, criteria-based idea selection) as they develop their ideas for how to respond to the needs of characters in literature. Finally, the design of the professional development workshop is meant to lead to curricular innovation. While participants will be introduced to various techniques and the framework, the participants will be responsible for designing their own projects, and will utilize innovation-oriented design techniques to do so.

Unit 5 ... How do we bring cross functional holistic learning using the design process

A Synergy Between Engineering and Literature: The core idea of our approach is that engineering need not "stand alone" in the curriculum, but can and should leverage existing curricular elements -- in particular literature. We envision a curriculum in which students respond to literature through engineering design projects by identifying needs that the characters have, by identifying multiple possible solutions, and by exploring and refining those solutions through prototyping and revision. For example, kindergarteners might respond to a common fairy tale by designing a house for one of the little pigs (or perhaps a means of blowing down a house for the wolf!); fifth graders might respond to the Blue Dolphins by identifying needs and solutions for Karana, the marooned main character of the novel.

	Reading:
http://www.integratingengineering.org/example literature_081307.htm	
Define a story map.	Bring Engineering to the K-5 classroom bring engr_elem021505.pdf (392.444 Kb)
Integrating the engineering framework into the K-5 curriculum and its connection to other disciples.	Using a simplified design process word document (35 Kb) This is a write-up by a colleague of mine, who teaches Science in the 5th grade. It shows some
Discussion Board: Explain what you believe the "Learning to Think" Matrix is saying?	of the details that need to be thought of by the student when doing a design process. It re- enforces our thoughts of integrating the engineering into the Math & Science curriculum.
Create an engineering design challenge for a children's literature book that you use in your classroom.	Development of Inquiry-based learning Scoffolding the Development of an Inquiry Based

Show how this starts with an engineering theme and then integrates Math & science from the Framework. How do we integrate a science lesson and mathematics into the design Challenge? Use Template-design challenge	(Science) Classroom.htm (24.218 Kb) This is a paper that describes a learning project at College of Computing, Georgia Institute of Technology. This team was developing a concept called Learning by Design (LBD) for students in middle school. It re-enforces the concepts we are discussing.
Developing the methodology of finding "Engineering Design Challenges" in the literature being read.	Bring Engineering to Elementary School Enabled: Statistics Tracking <u>Tufts University</u> (392.444 Kb) developing a toolset for the students to use.
 Engaging students with engineering in their stories Picking literature: use books to also cover the social studies themes as defined in the framework. Have this years Science requirements on a poster and review it with the children. Pick a design challenge that uses the science requirement for the year. 	 Assignment 1: How can we teach engineering through other subjects (History, Social studies, Art, Music, PE) to our class? Explain and give examples. Assignment 2: using the story" The Three Little Pigs" describe how you would show Science, Math & Engineering principles Assignment 3: How can we build excitement, fun, and creativity into the classroom with engineering? Explain and give examples Assignment3.3: Pick a story from your grade level and create a learning plan that connects the engineering elements with Math & Science. Assignment 4; connecting the grade level science to the engineering project

Unit 6 Collaboration, Teams, Assessments, and Reports

Team members learn to ask questions like the following as the plan passes through the stages of development:

- Do we have the right goals?
- Have we identified the critical factors influencing this situation or have we fallen into the trap of addressing symptoms rather than root causes?
- Has our problem identification process been comprehensive?
- What is still missing?
- Who else should we consult who might guide us well?
- Is the action plan well grounded in past practice while forward-looking and innovative?
- Have we learned of and from the mistakes of others?
- What could possibly go wrong?

- What's the worst that might happen?
- What obstacles, barriers and surprises might block our success?
- What can we do to prepare for them?

Model for the students the process of Observation, Investigation and to communicate their thinking and development of ideas.

Creating lessons using literature combined with STEM.

Target five Socratic Questions to incorporate into a lesson you will use with your students. Present the framework for the lesson with the questions. Suggest an anticipated response to each question.

Consider three types of communications; various types of discussion; using notebooks (journal) or folders; and drawing, painting, and modeling.

Presentation Outline:

- What did we know?What did we need to learn?
- How did we approach this design challenge?
- What did we learn?
- What would we do differently the next time and why?

http://www.integratingengineering.org/literature/inquire_process.htm

Discourse and student learning:

How did the discussion help you as a teacher? How did the discussion help you as a learner?

Focus is on the importance of communication in everything we do and setting goals and assessments for our work.

How do we know we are successful?

Guidelines for Teams

- Decide on role for team members
- Develop program plan
- Questioning process
- Engineering journal
- Decide on team culture & operating guidelines

•Students tutoring other students.

Set up all female teams, all male teams them switch ... don't want to stereotype female roles

Discuss student assessment of the project. What was their strategy? Have them create a rubric of the desired outcome.

Integrate writing within the project activities.

Use simple format of

- Introduction
- Thesis/ focus statement
- Points 1, 2
- Conclusion

Working together to accomplish a common project.

- Learning the process of experimentation and mistakes
- Learning to organize and handle interruptions & changes
- Measurements and feedback to goals

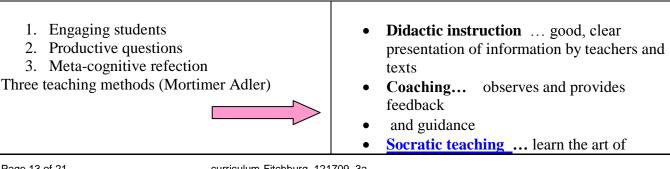
<mark>Unit </mark>7

Infusing <u>Thinking Skills</u> in our lessons. How do we re-connect teachers to their previous learning in Skillful thinking?

Researchers have found, for example, that mastery of at least four thinking skills—**comparing**, **classifying**, **sequencing**, **and predicting**—is essential for students to become effective readers, writers,

and learners (Commission on Reading, 1985; Hayes &. Flower, 1981; Jones, Amiran, & Katims, 1985; Paris, Wixon, & Palincsar, 1986; Siegler, 1998). Youngsters who do not master these basic cognitive skills in the primary grades rarely achieve grade-level performances in reading comprehension and independent learning (Siegler, 1998).

'Thinking skills' is a term often used to refer to the many capacities involved in thinking and learning. These skills are seen as fundamental to lifelong learning, active citizenship and emotional intelligence. Research shows that thinking is developed through cognitive challenge, and opportunities for collaborative work and meta-cognitive discussion and reflection.


1. Concrete preparation stimulus to thinking, introducing the terms of the problem

- 2. Cognitive conflict creates a challenge for the mind
- 3. Social construction dialogue with others, discussion that extends thinking
- 4. Meta-cognition reflection on how we tackled the problem
- 5. Bridging reviewing where else we can use this thinking and learning

Successful approaches to teaching thinking include cognitive acceleration, brain-based and philosophical approaches. These and other teaching strategies can help raise standards of achievement and create thinking children, thinking classrooms and thinking schools.

*How does the program teach innovation or entrepreneurship?

This program explicitly addresses innovation and entrepreneurship in a number of ways. First, there is an explicit focus on needs finding. Students must identify with characters in literature, and decide what opportunities might exist to help those characters. As such, the program is as heavily focused on the entrepreneurial skill of opportunity identification and assessment. Second, because the program is heavily oriented toward the kinds of thinking skills that the engineering design process requires, it includes substantial emphasis on the kinds of thinking that lead to innovation. In particular, teachers and students use divergent and convergent thinking processes and techniques (e.g., brainstorming, criteria-based idea selection) as they develop their ideas for how to respond to the needs of characters in literature. Finally, the design of the professional development workshop is meant to lead to curricular innovation. While participants will be introduced to various techniques and the framework, the participants will be responsible for designing their own projects, and will utilize innovationoriented design techniques to do so.

		inquiry,		
Creating rubrics and assessments		 the teacher poses a conceptual conundrum or snags one from the ongoing conversation. The teacher urges exploring of the issues 		
New Bloom's		Inquiry Example		
Taxonomy				
Remembering	Define variables (Define variables (experimental, dependent, controlled)		
Understanding	Identify variables	Identify variables in an experiment		
Applying	Study example of experiment, then apply same "rules"			
Analyzing	to new experimen What does the dat			
Analyzing	Defend conclusion	-		
Evaluating Creating				
Cleating	Write new experin	nent		
0 01	based on David Perkins	,		
Culture of Thinki	ng:	Visible Thinking We need to hold up the mirror so we can see and		
There is great value of attitudes of curiosity, inquiry, and playing with ideas in the development of important thinking dispositions. They may put an open-ended problem on the table and engage students in wrestling with it, without coming to any final solution that day. They may lead Socratic dialogues that unpack a complicated issue. Then, as the school year unfolds, they continue and extend these practices.		<i>learn how we are improving our thinking skills</i> Visible thinking helps to make concrete what such a classroom should look like and provides a kind of compass to point the way. At any moment, we can ask, "Is thinking visible here? Are students explaining things to one another? Are students offering creative ideas? Are they, and I, using the language of thinking? Is there a procon list on the blackboard? Is there a brainstorm about alternative plans on the wall? Are students debating interpretations?"		
language of thinki	ing	Model, Scaffolding, Coach, Reflecting and Fading		
There are many ways to make thinking visible. One of the simplest is for teachers to use the language of thinking (Tishman & Perkins, 1997). English and all other natural languages have a rich vocabulary of thinking consider terms like hypothesis, reason, evidence, possibility, imagination, perspective and routine use of such words in a natural intuitive way helps students catch on to the nuances of thinking and		Powerful Questions can be used in quite a elaborate way, but in its simplest version the teacher provokes students to address in turn three kinds of questions about an important topic: questions of exploration , connection making, and conclusion. The aim is to encourage the students themselves to formulate and then pursue the questions. The teacher facilitates the process without either providing the questions or answering them. Teachers who do not expect instant answers, who		
		display their own honest uncertainties, who take a		

her of .ce gh.
ce
5
eful
hat's
akes
ch has
992;
rch
emely
ts, by
-
ıst
ware
ware s be
ware
ware s be
ware s be
ware s be
ware s be is y,
ware s be is y, logy
ware s be is y, logy t,
ware s be is y, logy t, erson
ware s be is y, logy t,
ware s be is y, logy t, erson

According to Edward de Bono we tend to think in restricted and predictable ways. To become better thinkers we need to learn new habits. His teaching strategy known as 'thinking hats' helps learners try different approaches to thinking. Each 'thinking 'hat' represents a different way to think about a problem or issue. Children are encouraged to try on the different 'hats' or

approaches to a problem to go beyond their usual thinking habits (de Bono 1999). The 'hats'or thinking approaches, together with questions you might ask, are as follows: White hat = information *What do we know?* Red hat = feelings *What do we feel?* Purple hat = problems *What are the drawbacks*? Yellow hat = positives *What are the benefits?* Green hat = creativity *What ideas have we got?* Blue hat = control *What are our aims?* De Bono claims the technique is widely used in management but little research has been published on its use in education. Some teachers have found it a useful technique for encouraging children to look at a problem or topic from a variety of perspectives. It encourages us, and our children, to think creatively about any topic and to ask: 'Is there another way of thinking about this?' Session 8 4hours What will you bring back to your classroom? ... see attachment ٠ How is skillful thinking connected to engineering? Explain your view point. • Candidates will detail some ideas that they would incorporate into their lesson plans? • Candidates will provide feedback to other teachers on their lesson plans. • Candidates will design what they would do to evaluate the knowledge that their students have of their thinking strategy and what engineers do. Post assessment survey • Do you believe what you thought about learning strategy coming into the class is the same as what you know now? • Does cross functional learning add value to your classroom students? • Will skillful thinking learning help your students do better in understanding the content portion of classroom activities? Follow-on session: Develop two stories that you are using in your class connecting the science and math to the design challenge. Show how you will integrate the science from the framework into the design process. These will be discussed and graded as part of the class for credit. Develop a rubric for your students input and show how it can support their learning.

Copies of some of the assignments

Assignment ... Interview an Engineer

Action	Description
Recall your interview:	Anything you learned that you want to share?
	Knowledge, Skills, Attitudes?
Was the engineer excited about	
what they were doing? Why did	
they feel that way?	
Does the items done during the	Which of the 8 elements was she/he doing and why
day, fit into the Design process	do you think that?
described in the Framework	
1. Identify the need or problem	
2. Research the need or problem	
• Examine current state of	
the issue and current	
<u>solutions</u>	
3. Develop possible solution(s)	
Brainstorm possible	
<u>solutions</u>	
• Draw on mathematics and	
science	
Articulate the possible	
solutions in two and three	
dimensions	
• Refine the possible	
solutions	
4. Select the best possible	
solution(s)	
• Determine which	
solution(s) best meet(s)	
the original requirements	
5. Construct a prototype	

• Model the selected	
solution(s) in two and	
three dimensions	
<u>6. Test and evaluate the</u>	
solution(s)	
• Does it work?	
 Does it meet the original 	
design constraints?	
7. Communicate the solution(s)	
• Make an engineering	
presentation that includes	
a discussion of how the	
solution(s) best meet(s)	
the needs of the initial	
problem, opportunity, or	
need	
Discuss societal impact	
and tradeoffs of the	
solution(s)	
8. Redesign	
• Overhaul the solution(s)	
based on information	
gathered during the tests	
and presentation	
and presentation	
	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design engineer use a modified process	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers:	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: • Manufacturing and Support	Does your Engineer fit here? Explain your thoughts.
Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers:	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products Management 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products Management Sales Engineering 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products Management Sales Engineering Reliability & Safety 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products Management Sales Engineering 	
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products Management Sales Engineering Reliability & Safety engineering 	Does your Engineer fit here? Explain your thoughts.
 Engineers who work in other roles versus just a design engineer use a modified process that fits their needs. Listed below are some of the other jobs for engineers: Manufacturing and Support Engineering Development of future tools, planning, etc. Training Developing cost models, component analysis. Customer service planning and execution for general products Management Sales Engineering Reliability & Safety 	

dis-similarities of Engineering profession the education Profession/	
Did you discuss any of the values with them?	Describe what you heard.
end	

Assignment ... Integrating Engineering with Science and Math through a fairytale.

This assignment combines what you know about Science, Engineering, Mathematics and the fairytale ... **Three little Pigs.**

You need to pick a grade level and take what the framework states as requirements for a Science, Mathematics and Engineering and put it together as a matrix of items to teach.

This is not a lesson	plan, but just	t a foundation of ideas.
----------------------	----------------	--------------------------

	Web sites for your use;
http://w	vww.shol.com/agita/pigs.htm
http://w	vww-math.uni-paderborn.de/~odenbach/pigs/pig2.html

Action			Description		
Complete the matrix below.			In the mat	trix below, show l	now you can integrate the
If you have a better way of showing this			story with the Framework.		
assignment, please use it.		-			
Pick a Grade lev	Pick a Grade level				
Add as many elements as you need in th			ie table.		
Element of the	Engineering	ering Math		Science	Comments
Story					
	Designing a	Drawing		Force	How could the pigs
	house to with	• D	Dimensions		build a stronger house?
Example	stand lots (Area			What does it mean to be
Page 19 of 21 curriculu			ulum-Fitchburg_1	21709_3a	

	need to		a stronger house?
	define) of		
	wind		
XX71 / 1	11 1/	F	
What supplies wo	•		
engage the studen	its?		
TT 11.111			
How would this b	e exciting to the		
children?			
*** 11.1.1.1.1.1			
Would this be helpful to the			
teacher?			
How would you use a vocabulary			
chart in this lesson			
How can you use the requirements			
to steer the learning in a known			
direction?			
end			

Assignment: What will you bring back to your classroom?

Background	 At the beginning of the course, we said we would do the following: What is the profession of engineering all about Review of the engineering framework (one of the strands of the science framework). How the engineering methodology fits into the whole learning process? How do we integrate the engineering process into math and science using non-fiction literature? Designing a learning environment.
Summary of some of my key points	That the engineering design process can be used as a learning tool for Math and Science as well as by itself. Since the definition of Engineering is to design a useful product using Math and Science, we can ask our students to design something or we can incorporate it into our literature studies by charging our students to design something at various points while reading fictional literature. We can empower them to collaborate on these projects as mini- design teams. As an example, in "Goldilocks and the Three Bears", the children may identify a need to do the following:
Page 20 of 21	curriculum-Fitchburg_121709_3a

William Wolfs Syllabus for E	on 1/25/2010 ngineering in K-5 curriculum
Assignment:	 Design a system for the Bears to know someone is in their house Design a stronger chair for the Baby Bear Design an escape system for Goldilocks. By reviewing the table "Learning to Think", we can see the similarities in the processes of Critical thinking, Science, Engineering and Mathematics. This provides us with the opportunity to use the critical thinking process of questions to support our use of engineering as part of the learning process. 1. Tell the group how you will incorporate within your class the use of the engineering process as a vehicle to teach math, science and engineering? 2. Can you pick at least two fictional books for your grade level and describe a few jumping off point to empower the students to use the engineering principles? 3. How would you empower the students to work on the projects and what deliverables would you set for them? 4. What items in your plans are getting the students to be excited about learning?
Supported Framework documents	 Math framework outline Appendix I Science Framework Strand 4 Science Framework(Engineering)